近大推薦・数学解答いきます③

こんにちは。KEC茨木本校2230です。
近大推薦入試(12/3),数学の解答続編,数学①第3問です。

【解答】
ア,イ=2,2
ウ=0
エオ=-1
カ=3
キク,ケ=-1,2
コ,サシ=2,11
スセ,ソ=-5,3
タチ,ツテ=64,27

【解説】
(1)
$\int_{-1}^{1}f(x)dx=\int_{-1}^{1}(3x^{2}+ax+b)dx$
$=\left[x^{3}+\frac{1}{2}x^{2}+bx\right]^1_{-1}=2b+2$
(2)前半
$g(x)=x$のとき
$\int_{-1}^1f(x)g(x)dx=0$より $\int_{-1}^{1}(3x^{3}+ax^{2}+bx)dx=0$
$2\int_0^1ax^2dx=0$,$\left[\frac{1}{3}ax^{3}\right]^1_0=0$
$\frac{1}{3}a=0$ ∴$a=0$
$g(x)=1$のとき
$\int_{-1}^1f(x)g(x)dx=0$より $\int_{-1}^{1}(3x^{2}ax+b)dx=0$
$2\int_{0}^{1}(3x^{2}+b)dx=0$,$\left[x^{3}+bx\right]^1_0=0$
$1+b=0$ ∴$b=-1$
逆に,$a=0$,$b=-1$のとき,$g(x)=px+q$とすると
$\int_{-1}^1f(x)g(x)dx=\int_{-1}^{1}(3x^{2}-1)(px+q)dx$
$=\int_{-1}^1(3px^{3}+3qx^{2}-px-q)dx=2\int_{0}^1(3qx^{2}-q)dx$
$=2\left[qx^{3}-qx\right]^1_0=2(q-q)$
$=0$
となる。よって求める$a$,$b$の値は$a=0$,$b=-1$
(2)中盤
$f(x)=h(x)$を解くと$3x^{2}-1=cx+5$,$3x^{2}-cx-6=0$ ・・・①
①の2解を$α$,$β$($α<β$)とすると,解と係数の関係から
$α+β=\frac{c}{3}$,$αβ=-2$ ・・・②
$α<x<β$のとき$f(x)<h(x)$なので
2曲線で囲まれた部分の面積について次の式が成り立つ。
$\int_α^β(h(x)-f(x))dx=\frac{27}{2}$
$\int_α^β(-3x^{2}+cx+6)dx=\frac{27}{2}$
$\frac{3}{6}(β-α)^{3}=\frac{27}{2}$ ∴$β-α=3$
このとき$(β-α)^{2}=9$,$(α+β)^{2}-4αβ=9$
②を代入すると$\left(\frac{c}{3}\right)^{2}+8=9$
$\left(\frac{c}{3}\right)^{2}=1$ これを満たす正の数$c$は$3$
このとき①より$3x^{2}-3x-6=0$,$x^{2}-x-2=0$
$(x+1)(x-2)=0$ ∴$x=-1,~2$
つまり交点の座標は($-1,~2$),($2,~11$)
(2)後半
$f(x)h(x)=0$つまり$(3x^{2}-1)(3x+5)=0$の解は$x=\frac{-5}{3},~-\frac{1}{\sqrt{3}},~\frac{1}{\sqrt{3}}$であり,このうちで最小の値は$\frac{-5}{3}$
このとき
$\int_\frac{-5}{3}^1f(x)h(x)dx=\int_\frac{-5}{3}^1(3x^{2}-1)(3x+5)dx$
$=\int_\frac{-5}{3}^1(9x^{3}+15x^{2}-3x-5)dx$
$=\left[\frac{9}{4}x^{4}+5x^{3}-\frac{3}{2}x^{2}-5x\right]^1_\frac{-5}{3}$
$=\frac{64}{27}$

【感想】
数Ⅱ微分積分,頻出分野ですね。標準レベルです。
(2)では,上記のように,1次関数$g(x)$として超簡単なもので試すことで定数$a,~b$を求めてしまえます。穴埋め問題では値が決まれば即終了ですが,記述式の場合は×です。必要条件しか使っとらん,十分性を確かめておく必要がありますのでご注意。最後の定積分は計算だけですがしんどいです,ここは後回しまたはスルーしますか。