冬期講座,開幕!

こんにちは。KEC茨木本校2230です。
今年もあと1週間と,慌ただしいことハンパない時期となりました。
こんな寒い季節にKECからの熱い贈り物といえば,,,
そうです,冬期集中講座ですね。

いよいよ本日,12/25から本格開幕します。
大学受験生向け講座は事前課題がタンマリですね。

一人ひとりの目標を達成できますように,KECスタッフ共々バックアップしてまいります。
共に熱い冬を過ごしましょう。

冬期講座準備中

こんにちは。KEC茨木本校2230です。
今年もあと2週間,年末ですね。
この時期の塾予備校風物詩は,冬期集中講座。

一部の講座は12/23,今週末からスタートです。

当校事務局では,冬期集中講座に向けて只今準備中。
高3高卒対象講座では,試験本番を想定した模擬テスト形式が多く,その印刷やらセッティングやらでごった返しています。

個人別時間割を付けて配布していきますね。
熱いレッスン,まもなくです。

冬らしく,うんと冷え込む日もあります。体調に気をつけて年末を過ごしてまいりましょう。

共通テスト1ヶ月前の心構え

こんにちは。KEC枚方本校アシスタントの神田です。

12月も半分が過ぎ、いよいよ寒さも本格的になってきました。
最近は気温がすっかり下がって体調管理が難しく、そのせいか新型コロナウイルスも第八波を迎えつつあるそうです。いまいちど気を引き締めて防寒、感染対策、規則正しい生活習慣を徹底していきましょう。

さて、共通テストまであと1ヶ月を切り、焦りや不安を覚える受験生の方も多いと思います。今回はこの時期の過ごし方についてお話していこうと思います。少しでも参考になれば嬉しいです。

まずは皆さんが気になっている勉強方法についてです。
この時期となると模試もすべて終えてしまい、市販の実戦形式の問題集で演習に取り組んでいる人が多いと思います。ここで大切にしてほしいのが復習方法です。
共通テストはセンター試験に比べて文章量が大幅に増え、それに伴って分量も増えました。すると時間が大事になってくる訳ですが、問題を早く解くためには、出来なかった問題よりも解けた問題への取り組み方がカギになってきます。例えば実践形式の演習で解くのが間に合わなかったときに、制限時間内に出来なかった部分を解いておくだけでは、解くのに時間がかかった箇所が改善できません。出来なかった問題だけでなく、できた問題にも目を向けてみましょう。
また科目ごとの復習方法ですが、理系科目は1回分の問題に対して2度は解き直しをしておくことをおススメします。特に数学や化学などではある程度、決まった分野から問題が出るので、少し設定が違っていても同じような手順で解けるようになっていることが多いです。そのため解き直しをするほど解き方の見通しも立ちやすくなり、それだけ問題文の理解も素早くなります。
古文漢文、英語リーディングは問題文を繰り返し読みましょう。古文は主語の省略に注意しながら頭の中で品詞分解して逐語訳すると良いです。リスニングは多くの問題集で本番に出そうな表現が扱われているので耳を慣らしておきましょう。
社会は設問ごとにではなく選択肢ごとに復習し、その周辺の知識について参考書を読みながら整理しましょう。ノートにまとめてみてもいいかもしれません。

以上の復習方法はいずれも時間がかかるもので、人によっては煩わしく感じるかもしれません。しかし闇雲に問題をこなすよりは、弱点を着実に補強していく方が実力も身につくはずです。特に点数が伸び悩んでいたり、なかなかスピードが上がらないという人は試してみてください。

続いて、生活習慣についてです。
共通テストを含め、ほとんどの大学入試は朝から実施されます。そのため入試で良いパフォーマンスを発揮するためには朝に頭が働くように調節する必要があります。耳にタコができるほど言われていることかもしれないですが、早寝早起きを徹底しましょう。その上で、朝から勉強に取り掛かりましょう。昼寝や休み時間の仮眠も控えるようにするのが望ましいです。夜に寝て、朝早く起きて、朝から勉強できるように今のうちから体内時計を整えておきましょう。すでにできている人はしっかりと生活習慣を維持しましょう。もちろん上に書いたように健康管理も頑張って下さい。特にこの時期はストレスを抱え込んで生活や体調が乱れる人もいますので気を付けてください。

共通テストまであと4週間。まだまだできることはいっぱいあります。最後まであきらめずに頑張りましょう。

秋入試悲喜こもごも,次は冬入試へ

こんにちは。KEC茨木本校2230です。
11月から12月にかけての大学入試秋の陣は一段落。
本命大をみごと勝ち取れた方,おめでとうございます。正月をウキウキで迎えられますね。
しっかりおさえて次を目指す方,この調子で参りましょう。

残念な結果となってしまった方,次ですよ。
高校入試では味わうことのなかった失望感をここで初めて体験した方もいらっしゃるかも。
ひとまずは,倍率が違うし,と軽く言い訳しておきましょう。

でも,この結果を受け止めるにあたって,反省と修正は必要です。
なぜ合格できなかったのか。
あの1問が正解だったら。あの分野で力不足だったから。
演習量が足りなかったから。弱点を放置していたから。
受験校とのギャップが埋まらないままだったから。

7週後に迫る冬入試でリベンジを果たしたいところですが,受験校について再考したいことがあります。
「チャレンジ校は1つ,相応校および安全校を優先」
です。これからの7週で,各レベルの大学の過去問から自分の弱点克服の材料を得て,謙虚に克服していきましょう。

今月下旬には,KEC冬期集中講座も始まります。
いざリベンジへ。個々の思いが届くよう,熱い冬を共に励みましょう。

近大推薦・数学解答いきます④

こんにちは。KEC茨木本校2230です。
近大推薦入試(12/3),数学の解答続編,数学②第3問です。

【解答】
ア,イ=3,2
ウ,エオ,カキ=7,10,20
クケ,コ,サシ,ス=-9,5,-2,5
セソ=-5
タ=5
チ,ツ=2,9
テト,ナ=-9,5
ニ,ヌ=9,5

【解説】
$1+\mathrm{tan}^2θ=\frac{1}{\mathrm{cos}^2θ}$であり,$\frac{1}{\mathrm{cos}θ}=\frac{x}{\sqrt{3}}$と$\mathrm{tan}θ=\frac{y}{\sqrt{2}}$を代入すると
$1+\left(\frac{y}{\sqrt{2}}\right)^2=\left(\frac{x}{\sqrt{3}}\right)^2$
よって曲線$C$の方程式は$\frac{x^2}{3}-\frac{y^2}{2}=1$である。
$2x^2-3y^2=6$ ・・・① としておく。

曲線$C$上の点で直線$l$に最も近い点は,直線$l$より上の,双曲線のうち左側の曲線上に存在する。その点で引いた曲線$C$の接線の方程式を$y=3x+a$ ・・・② とおく。ただし定数$a>\frac{3}{2}$ ・・・③ である。
①②から$y$を消去して
$2x^2-3(3x+a)^2=6$,$25x^2+18ax+3a^2+6=0$ ・・・④
接するので,判別式=0とすると
$(9a)^2-25(3a^2+6)=0$より$a^2-25=0$ ∴$a=\pm5$
③より$a=5$
このとき④から$x=\frac{-9}{5}$,さらに②から$y=\frac{-2}{5}$
よって点$\mathrm{P}$の座標は$\left(\frac{-9}{5},~\frac{-2}{5}\right)$
点$\mathrm{P}$と直線$l:6x-2y+3=0$の距離は
$\frac{|6×\left(\frac{-9}{5}\right)-2×\left(\frac{-2}{5}\right)+3|}{\sqrt{6^2+(-2)^2}}=\frac{7\sqrt{10}}{20}$

①と$y=3x+k$ ・・・⑤ とから$y$を消去,整理すると
$25x^2+18kx+3k^2+6=0$ ・・・⑥
異なる2点で交わるので,判別式>0とすると
$(9k)^2-25(3k^2+6)>0$より$k^2-25>0$ ∴$k<-5,~5<k$ ・・・⑦
$\mathrm{Q,R}$の$x$座標をそれぞれ$q,~r$とおくと,解と係数の関係から
$q+r=\frac{-18k}{25}$
線分$\mathrm{QR}$の中点を$\mathrm{M}$とおくと,$\mathrm{M}$の$x$座標は$\frac{q+r}{2}=\frac{-9k}{25}$
また$\mathrm{M}$の$y$座標は⑤から$3×\frac{-9k}{25}+k=\frac{-2k}{25}$
よって$\mathrm{M}$の座標は$\left(\frac{-9k}{25},~\frac{-2k}{25}\right)$
この座標を$\left(x,~y\right)$とおくと$x=\frac{-9k}{25}$,$y=\frac{-2k}{25}$
辺々割ると$\frac{x}{y}=\frac{9}{2}$,∴$y=\frac{2}{9}x$
また⑦を25で割り-9を掛けることで$\frac{-9k}{25}<\frac{-9}{5},~\frac{9}{5}<\frac{-9k}{25}$
つまり$x<\frac{-9}{5},~\frac{9}{5}<x$が得られる。
よって点$\mathrm{M}$の軌跡は
直線$y=\frac{2}{9}x$の$x<\frac{-9}{5},~\frac{9}{5}<x$の部分である。

【感想】
数Ⅲの曲線シリーズから,双曲線に関する出題です。標準レベルです。
媒介変数表記で来ましたから,不慣れな人は参ったことでしょう。前半,距離$d$の最小は,曲線$C$上の$\left(\frac{\sqrt{3}}{\mathrm{cos}θ},~\sqrt{2}\mathrm{tan}θ\right)$と直線$l:6x-2y+3=0$の距離を計算しようとするとドツボです。上記のように平行な接線を登場させるか,または微分して傾き3になる接点を逆算する方法があります。
後半は軌跡の問題でした。線分の中点の軌跡は他大学でも類題がありますので練習しておきたいところです。

近大推薦・数学解答いきます③

こんにちは。KEC茨木本校2230です。
近大推薦入試(12/3),数学の解答続編,数学①第3問です。

【解答】
ア,イ=2,2
ウ=0
エオ=-1
カ=3
キク,ケ=-1,2
コ,サシ=2,11
スセ,ソ=-5,3
タチ,ツテ=64,27

【解説】
(1)
$\int_{-1}^{1}f(x)dx=\int_{-1}^{1}(3x^{2}+ax+b)dx$
$=\left[x^{3}+\frac{1}{2}x^{2}+bx\right]^1_{-1}=2b+2$
(2)前半
$g(x)=x$のとき
$\int_{-1}^1f(x)g(x)dx=0$より $\int_{-1}^{1}(3x^{3}+ax^{2}+bx)dx=0$
$2\int_0^1ax^2dx=0$,$\left[\frac{1}{3}ax^{3}\right]^1_0=0$
$\frac{1}{3}a=0$ ∴$a=0$
$g(x)=1$のとき
$\int_{-1}^1f(x)g(x)dx=0$より $\int_{-1}^{1}(3x^{2}ax+b)dx=0$
$2\int_{0}^{1}(3x^{2}+b)dx=0$,$\left[x^{3}+bx\right]^1_0=0$
$1+b=0$ ∴$b=-1$
逆に,$a=0$,$b=-1$のとき,$g(x)=px+q$とすると
$\int_{-1}^1f(x)g(x)dx=\int_{-1}^{1}(3x^{2}-1)(px+q)dx$
$=\int_{-1}^1(3px^{3}+3qx^{2}-px-q)dx=2\int_{0}^1(3qx^{2}-q)dx$
$=2\left[qx^{3}-qx\right]^1_0=2(q-q)$
$=0$
となる。よって求める$a$,$b$の値は$a=0$,$b=-1$
(2)中盤
$f(x)=h(x)$を解くと$3x^{2}-1=cx+5$,$3x^{2}-cx-6=0$ ・・・①
①の2解を$α$,$β$($α<β$)とすると,解と係数の関係から
$α+β=\frac{c}{3}$,$αβ=-2$ ・・・②
$α<x<β$のとき$f(x)<h(x)$なので
2曲線で囲まれた部分の面積について次の式が成り立つ。
$\int_α^β(h(x)-f(x))dx=\frac{27}{2}$
$\int_α^β(-3x^{2}+cx+6)dx=\frac{27}{2}$
$\frac{3}{6}(β-α)^{3}=\frac{27}{2}$ ∴$β-α=3$
このとき$(β-α)^{2}=9$,$(α+β)^{2}-4αβ=9$
②を代入すると$\left(\frac{c}{3}\right)^{2}+8=9$
$\left(\frac{c}{3}\right)^{2}=1$ これを満たす正の数$c$は$3$
このとき①より$3x^{2}-3x-6=0$,$x^{2}-x-2=0$
$(x+1)(x-2)=0$ ∴$x=-1,~2$
つまり交点の座標は($-1,~2$),($2,~11$)
(2)後半
$f(x)h(x)=0$つまり$(3x^{2}-1)(3x+5)=0$の解は$x=\frac{-5}{3},~-\frac{1}{\sqrt{3}},~\frac{1}{\sqrt{3}}$であり,このうちで最小の値は$\frac{-5}{3}$
このとき
$\int_\frac{-5}{3}^1f(x)h(x)dx=\int_\frac{-5}{3}^1(3x^{2}-1)(3x+5)dx$
$=\int_\frac{-5}{3}^1(9x^{3}+15x^{2}-3x-5)dx$
$=\left[\frac{9}{4}x^{4}+5x^{3}-\frac{3}{2}x^{2}-5x\right]^1_\frac{-5}{3}$
$=\frac{64}{27}$

【感想】
数Ⅱ微分積分,頻出分野ですね。標準レベルです。
(2)では,上記のように,1次関数$g(x)$として超簡単なもので試すことで定数$a,~b$を求めてしまえます。穴埋め問題では値が決まれば即終了ですが,記述式の場合は×です。必要条件しか使っとらん,十分性を確かめておく必要がありますのでご注意。最後の定積分は計算だけですがしんどいです,ここは後回しまたはスルーしますか。

近大推薦・数学解答いきます②

こんにちは。KEC茨木本校2230です。
近大推薦入試(12/3),数学の解答続編,数学①②共通の第2問です。

【解答】
アイ=31
ウエ,オ=93,3
カキ,ク,ケコ,サ=11,3,93,6
シス,セ,ソタ=-5,3,12
チ,ツ,テ=5,3,2
ト=3
ナニ,ヌ,ネ=15,3,4

【解説】
(1)
余弦定理より$\mathrm{AB}^{2}=6^{2}+5^{2}-2×6×5×\mathrm{cos}B$
$\mathrm{AB}^{2}=36+25-2×6×5×\mathrm{cos}60°$
∴$\mathrm{AB}=\sqrt{31}$
(2)
正弦定理より,外接円の直径が$\frac{\mathrm{AC}}{\mathrm{sin}B}=\frac{\sqrt{31}}{\mathrm{sin}60°}=\frac{2\sqrt{31}}{\sqrt{3}}$
なので,半径は$\frac{\sqrt{93}}{3}$
内接円の半径を$r$とすると,△ABCの面積について次の式が成り立つ。
$\frac{1}{2}r(\mathrm{AB}+\mathrm{BC}+\mathrm{AC})=\frac{1}{2}\mathrm{AB}\cdot\mathrm{BC}~\mathrm{sin}B$
$\frac{11+\sqrt{31}}{2}r=15×\frac{\sqrt{3}}{2}$
$r=\frac{15\sqrt{3}}{11+\sqrt{31}}=\frac{11\sqrt{3}-\sqrt{93}}{6}$
(3)
2つの三角形△ABCと△APTは相似であり,相似はAB:AP=6:$x$
よって,$\mathrm{PT}=\mathrm{BC}×\frac{x}{6}=\frac{5}{6}x$
BCを底辺としたときの△ABCの高さは$\mathrm{ABsin}B=3\sqrt{3}$
PTを底辺としたときの△APTの高さは$3\sqrt{3}×\frac{x}{6}=\frac{\sqrt{3}}{2}x$
よって$\mathrm{PQ}=3\sqrt{3}-\frac{\sqrt{3}}{2}x$
長方形の面積は$S=\mathrm{PT}×\mathrm{PQ}=\frac{-5\sqrt{3}}{12}x^{2}+\frac{5\sqrt{3}}{2}x$
変形すると$S=\frac{-5\sqrt{3}}{12}(x-3)^{2}+\frac{15\sqrt{3}}{4}$
よって$x=3$($0<x<6$を満たす)のとき$S$は最大となり,最大値は$\frac{15\sqrt{3}}{4}$

【感想】
数Ⅰ図形と計量,2次関数からの出題でした。易しめです。
外接円や内接円は定番ですね。長方形の計量では,$\mathrm{PB}=6-x$,$\mathrm{PQ}=\mathrm{PB}~\mathrm{sin}B$として求める方法もあります。平方完成など,きちんと作業するのみです。

近大推薦・数学解答いきます①

こんにちは。KEC茨木本校2230です。
昨日(12/3)の近大推薦入試,数学を解いてみました。
受験生の皆さんの参考となれば幸いです。

まずは,数学①②共通の第1問です。
【解答】
ア,イ=-,1
ウ,エ=2,3
オカ=-1
キ,ク,ケ=3,7,2
コ,サ=2,9
シ,ス=1,9
セ,ソタチ=5,216

【解説】
(1)前半
$y=x^{2}+(2a-2)x+2a^{2}-4a-2$
$~~=(x+a-1)^{2}+a^{2}-2a-3$
よって頂点の座標は($-a+1$,$a^{2}-2a-3$)

(1)後半
次の3つの条件を満たす$a$を求める。
①頂点の$x$座標(放物線の軸の位置)について
$-a+1>-1$ ∴$a<2$
②頂点の$y$座標について
$a^{2}-2a-3<0$ ∴$-1<a<3$
③$x$座標が$-1$のとき$y$座標は正になるので
$2a^{2}-4a-2>0$
∴$x<\frac{3-\sqrt{7}}{2},\frac{3+\sqrt{7}}{2}<x$
これら3つを同時に満たす$a$の値の範囲は
$-1<x<\frac{3-\sqrt{7}}{2}$

(2)解答前の準備
さいころを投げて,2または4の目が出る事象をA,3の目が出る事象をB,6の目が出る事象をC,1または5の目が出る事象をDとする。 A,B,C,D各事象が起こる確率は順に$\frac{1}{3},\frac{1}{6},\frac{1}{6},\frac{1}{3}$である。
(ⅰ) Aが2回,またはCとDが1回ずつ起きるときである。 確率は$\left(\frac{1}{3}\right)^{2}+_2\mathrm{C}_1×\frac{1}{6}×\frac{1}{3}=\frac{2}{9}$
(ⅱ) Aが2回とBとDが1回ずつ,またはBとCが1回ずつとDが2回起きるときである。 確率は$\frac{4!}{2!}×\left(\frac{1}{3}\right)^{2}×\frac{1}{6}×\frac{1}{3}+\frac{4!}{2!}×\frac{1}{6}×\frac{1}{6}\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$
(ⅲ) 始めの3回とあとの2回に分けて考える。 始めの3回では,A2回とD1回,またはC1回とD2回が起きるときである。
この確率は$_3\mathrm{C}_2×\left(\frac{1}{3}\right)^{2}×\frac{1}{3}+_3\mathrm{C}_1×\frac{1}{6}×\left(\frac{1}{3}\right)^{2}=\frac{1}{6}$ あとの2回では,実質4だけ進めばよい。AとCが1回ずつ,またはBが2回起きるときである。 この確率は$_2\mathrm{C}_1×\frac{1}{3}×\frac{1}{6}+\left(\frac{1}{6}\right)^{2}=\frac{5}{36}$
よって求める確率は$\frac{1}{6}×\frac{5}{36}=\frac{5}{216}$

【感想】 (1)は2次関数,(2)確率でした。どちらも易しめ。
$x>-1$を満たす解が2つある,とすればありがちな問題ですが,グラフの位置ネタで提供してしまっているところは,易しすぎかも。確率はさいころと点の動きの合わせ技で,これもよくある題材ですね。事象の内訳を見落とさないように気を付けましょう。

第2問第3問も解答していきます,しばらくお待ちください。

指南②自信がないです

こんにちは。KEC茨木本校2230です。
いきなりですが,受験生に質問します。
①授業で,どう解いたのと聞かれても答えられないときってありませんか。
②もうすぐ入試だけれど,解ける気がしないとか。

YESだった人。
ひょっとして,自信ないんじゃないです?
じゃあ,どうすりゃ自信なんてつくのさって?

答えは,
淡々と練習する。勉強する。

これだけ?
そう,これだけ。

やってますけど?
そう,その積み重ね。薄い1枚1枚が積み重なって,分厚い束になるように。

薄っぺらすぎてもいけません。それなりのものが欲しいです。
知識レベルの暗記→解法習得の問題練習→過去問トレーニングは必須。
そこで,できなかった問題を次はできるように取り組む。

秋頃の授業では入試問題を題材に演習しますが,解けなくて凹むことも多いでしょう。
でも,どうすれば解けるのか,ビジョンや方向性など考え方をどんどん吸収しましょう。
そして次は自分だけで解けるように。
この繰り返しと積み重ねが,確実に力になります。
こうして,自信は自ら育むのです。

某武道では練習時に聖句というものを唱える場面がありまして,その一文に次のようなものがあります。
己れこそ己れの寄るべ 己れをおきて誰に寄るべぞ
良く整えし己れこそ まこと得がたき寄るべなり

信じられる自分になるために,日々努力しようではありませんか。
もうひとつ。
挑戦する皆を鼓舞する,呪術廻戦・伏黒恵の台詞をお届けしましょう。
「できるかじゃねぇ やるんだよ!!」

さあ,共に頑張りましょう。

2023入試,秋の陣開戦

こんにちは。KEC茨木本校2230です。
11月も半ばとなり,学校推薦型選抜入試の時期に突入です。
昨日も,近大戦を終えて当校に直行したA君,P先生に出来具合を伺ってましたね。

複数回受験した人の方が一発狙いの受験生よりも合格率は高いようです。
それは,
 ①初回で場慣れする
 ②初回で最新出題傾向に触れられる
 ③今後の出題予想ができる
といった理由が挙げられますね。

うまくいけた人はそれでよし。
残念だとしても,今回の経験を一般選抜に活かせるはず,いいえ是非とも活かしてください。