【中間テスト③】ついに突破!

みなさん、こんにちは!

KEC近畿教育学院・予備校 石山本校の小原です。

 

今回も中学3年生の中間テスト結果についてです。

こちらが国語以外の点数を把握している段階で、その生徒とお話。

彼女曰く、国語は50何点、とのこと。

私は4科目の合計は300点ということを先に計算していました。

つまり、国語が50点以上の段階で5科目350点以上が確定したことが分かったので、

その事実を伝えました。

生徒「えっ!(嬉しそう)」

まぁ、彼女自身がその事実や点数をしっかり把握しておいてほしいことはさておき、

3年生になって初めての350越え(正確には354!)

 

彼女は英語と数学を個別指導で受講しています。

数学は順調に伸びているが、英語はまだまだ。でも、それは伸びしろがあるということ。

次の期末テストでは、400点目指して頑張ってほしいです。

それを言うと、彼女はきっと瞬時に首を横に振るだろうけど。

 

彼女のように、個別指導でひとつひとつ壁を乗り越えていきましょう!

無料体験指導は随時受付中です。

 

 

KEC近畿教育学院・予備校

石山本校

TEL077-537-5861

【中間テスト②】伸ばし続ける点数

みなさん、こんにちは!

KEC近畿教育学院・予備校 石山本校の小原です。

 

再び、中間テストの結果について嬉しい報告があります。

個別指導を受講している中3生ですが、394を出しました。

この生徒も3年生になっての最高得点です。

彼は英語はとても得意で90点台をキープしております。

数学は少し苦手なのですが、3年生になって70点以上を取り続けております。

また、今回素晴らしかったのが理科です。前回より26点アップしておりました。

普段は数学のみを受講しており、

理科は受講していないのですが、直前対策が活きたのかもしれません。

そして、実力テストでも点数を伸ばし続けています。

数学は3年生最初の実力テストから20点以上アップしています。

 

苦手な科目を伸ばしていけるのが個別指導の良いところです。

苦手科目が得意になれば、他の科目にも良い影響を及ぼしていきます。

 

さて、前回でもお話させていただきましたが、

KECの個別指導では、夏期講習を受講できなかった中学生対象の

秋期講習を開講しています。

苦手科目を克服したい方はぜひ受講してくださいね!

 

 

KEC近畿教育学院・予備校

石山本校

TEL077-537-5861

【個別指導】秋期講習やっています!

みなさん、こんにちは!

KEC近畿教育学院・予備校 石山本校の小原です。

 

10月も早1週間が過ぎました。

大津市の中学校のいくつかの中学校では、2学期中間テストが終了しましたね。

テスト終了時は出来に、テスト返却時は点数に一喜一憂するしていることでしょう。

ただ、テスト後がとても大事です。

特に英語や数学といった科目は積み重ねの科目です。

今やっている単元が次の単元で必要となってきます。

中学2年生や3年生はその意味をよくわかっていると思いますが。

つまり、2学期期末テストに向けて中間テストの内容を理解しておく必要があります。

そうしないと、期末テストで挽回することはできません。

 

そうは言っても、どうすればよいかお悩みのみなさんにKEC石山本校からお知らせです。

個別指導にて『秋期講習』を開催中です。

これは、英語・数学の復習に重点を置き、苦手科目を強化していく講習です。

夏期の期間中では勉強できなかった人もここで復習できます。

”冬期講習で頑張ればいい”という考えもあるとはおもいますが、

2学期中に挽回したいのであれば、ぜひ『秋期講習』を受講ください。

下記の連絡先から遠慮なくお問い合わせください!

 

 

KEC近畿教育学院・予備校

石山本校

TEL077-537-5861

サイン・コサインって・・・

こんにちは。KECの塾・予備校部門,高槻本校の数学・理科担当の川渕です。
高槻本校は,8月14日(土)~17日(火)の4日間,お休みを頂いています。
8月18日(水)から,夏期講習の第3タームを開講します。

夏期講習の前半期間,小学生の塾生から,こんなことを言われました。
「先生,サイン・コサインって,いつ使うん?」
サイン・コサインを習うのは高校の数IA。
小学生がそれを知っているのは優秀ですが,しかし,この発言には,「サイン・コサインを習って何の役に立つの・・・」といったニュアンスも含まれる気がします。

サイン・コサインは,もちろん,とても重要な関数です。
一例を挙げると,大学の専攻によっては数学で「フーリエ級数」を習います。
ざっくりいうと,いろんな関数を三角関数の和で表す技です。
例えば,こんな関数も近似できます。

上記の形のグラフは,細かい議論は抜きにして,
sin x + (sin3x)/3 + (sin5x)/5 + ・・・ + {sin(2n-1)x}/(2n-1) + ・・・
という無限級数の和を利用することで近似できます。
実際に,sin x,sin x +(sin3x)/3,sin x + (sin3x)/3 + (sin5x)/5,と少しずつ項を増やしてグラフを描くと,だんだん目的の関数に近付くようすがわかります。
ということで,恒例のScratchで表現してみました。
n=1,n=2,n=3,n=4,n=10,n=50の場合を順に描いています。
 


 
 
手計算でこんなことをするのは大変ですが,さすがコンピュータ。
難なくこなします。
Scratchは子ども向けのプログラミング言語ですが,三角関数はあらかじめ用意されています。

ところで,例の塾生の発言。
「サイン・コサインって,いつ使うん?」ですが,実は,続きがあります。
「・・・って,陣〇のネタで言ってた。」
質問ではなく,まさかの報告でした。
ただ,いずれ本当に「いつ使うん?」と思う日が来るかもしれません。
そこで,お休み中にグラフを作成してみました。
こんな感じで(?),第3ターム開講に向けての準備は万端です。


■KEC高槻本校の合格体験談・総集編はこちら

■KEC高槻本校の公式サイトはこちら

/*Scratchでコードを書いてみたシリーズ*/
1 楕円の焦点
2 放物線の焦点
3 ドップラー効果
4 光の屈折
5 転がる円の軌跡
6 動点P
7 曲技飛行
8 さいころの目が一致

さいころをふるかわりに

こんにちは。KECの塾・予備校部門,高槻本校の数学・理科担当の川渕です。
夏期集中講座も2タームの後半が始まりました。
高槻本校では,お盆休み(8/14~17)をはさみ,その後,3ターム前半・3ターム後半・4ターム前半・4ターム後半と9月初旬まで夏期集中講座が続きます。
昨年の夏期講習の終盤では,こんなブログを書いていました。

さいころをふってみた(2020年8月20日)

高2の夏期講習,数IAの授業で出てくる確率の問題。
「さいころを3回ふって,出た目がすべて一致する確率を求めよ。」
この確率を,さいころを実際にふったり,Excelで調べてみたりした話です。
1年前はExcelで調べましたが,最近,このブログではScratchをよく取り上げています。
ということで,Scratchでコードを書いて調べました。

こんな感じで,さいころをふるかわりに,3回,乱数を発生させて,それらが一致する回数を調べます。
さらに,今回は始めにさいころをふる回数を指定できるようにしました。
指定された回数のうち,何回,目が一致するか調べ,その確率を謎のUFOが推測します。

 
動画にもありましたが,結果は以下の通りです。
1回目:300/10000=0.03
2回目:275/10000=0.0275
3回目:27796/1000000=0.027796
理論値は1/36=0.027777…なので,わりと近い値が出ました。

こんな感じで,問題の研究(?)に余念がない訳ですが,実は,今年は,まだ高2の数IAの講座は始まっていません。
高槻本校では,4タームに実施します。
ということで,この問題,開講前に軽くネタバレしてしまいました。

これ以上ネタバレするとまずい(!)ので詳細をここでは述べませんが,3ターム・4タームにも多くの講座を開講します。
もちろん,高槻本校一押しの「斉藤ミルク先生の英語」の講座も多数開講します。
この機会に夏期集中講座の受講をご検討中の方は,ぜひ,お問い合わせください。
詳細をご説明いたします。
ちなみに,高槻本校の夏期集中講座のプログラムは,川渕が設計しています。

大逆転の夏・夏期集中講座
途中からの受講も可能です!

KEC_塾_予備校_高校受験_大学受験_夏期集中講座

/*Scratchでコードを書いてみたシリーズ*/
1 楕円の焦点
2 放物線の焦点
3 ドップラー効果
4 光の屈折
5 転がる円の軌跡
6 動点P
7 曲技飛行

☆棘皮動物☆

こんにちは。KECの塾・予備校部門,高槻本校の数学・理科担当の川渕です。
8月に入り,夏期講習の1ターム目が終盤にさしかかった今日この頃。
先日,ブラックタイガー先生の動画で紹介された中3数学の問題,高槻本校でも取り上げました。

へこんでいる部分の角の大きさの和を求める問題です。

この五芒星のような形。
皆さんは,何に見えるでしょうか。
「星」と答える塾生も多いのですが,なんとなく「ヒトデ」のようにも見えます。
ただ,個人的にはそんなにヒトデ好きではないので,ちょっと可愛くしてみました。
ちなみに,星のマーク「☆」は,ヒトデが由来なんだそうです。

ところで,中3理科の1タームのテキストでは,ヒトデがチラッと出てきました。
塾生の皆さん,覚えていますでしょうか?
軟体動物がどれかを選ぶ選択問題です。
ヒトデは棘皮(きょくひ)動物で,軟体動物とは異なる種類の動物。
棘皮動物の仲間には,ウニやナマコ,ウミユリ,クモヒトデなどがいます。

ナマコからは想像がつきにくいですが,棘皮動物のからだの特徴の1つは「中心から5方向に放射状に伸びたつくり」とのこと。
ということで,冒頭の問題。
図の中の顔を・・・

・・・詳しくは,ブラックタイガー先生の動画をご覧ください。


■KEC高槻本校の合格体験談・総集編はこちら

■KEC高槻本校の公式サイトはこちら

大逆転の夏・夏期集中講座
2ターム(8/4~)からの受講も可能です!

KEC_塾_予備校_高校受験_大学受験_夏期集中講座

中学数学 ワンポイントレッスン⑤

こんにちは。滋賀県の大津京にある塾、KEC西大津本校の梶山です。

久しぶりにワンポイントレッスンです。
いや、別にサボっていたわけではないのですが、中1、中2、中3がひたすら計算の項目で、タイムリーに効果を発揮できそうなネタがなかっただけなんですけどね。

最近、KECのブログにはタイガーマスク先生やら、ブラックタイガー先生やら出てきて、エライことになっています。(笑)

先日、そのブラックタイガー先生に「梶山先生のワンポイントレッスン、楽しみにしているんですよ~。次の動画はいつですかぁ?」とか嬉しいことを言われたので、ちょっと気分を良くしてアップです。(単純な私)

ただ、私はあくまで素顔の動画を出し続けますけど。

だって、これからドンドン暑くなってきているのに、あんなのかぶって授業なんかしたら、お肌が荒れちゃいますから♪

それでは今日のワンポイントレッスンです。

今回は生徒も参加。テンションが全然違います! やっぱり生徒がいると楽しくって仕方がない!!

 

《夏期集中講座についてはコチラから》

KEC近畿教育学院・予備校
西大津本校
TEL077-526-0226

Completing the square

こんにちは。KECの塾・予備校部門,高槻本校の数学・理科担当の川渕です。
中2の数学の授業でのこと。
連立方程式で,列車が鉄橋やトンネルを走行する問題をしました。
その解説で,豆知識を披露です。
高槻本校のそばには、阪急電車が走っています。
「阪急電車で地下線以外のトンネルって,山田本校の近くの『千里トンネル』しかないねんで」
・・・最近の塾生は鉄道に興味がないみたいで,あまりウケなかったのが残念です。

先日,高1の数学の授業でのこと。
塾生から「平方完成の練習がしたい」との申し出がありました。
そのときはテキストで指示をしたのですが,せっかくなので,恒例の(?)プリント作成です。
平方完成の練習用プリントを作りました。

KEC平方完成1
KEC平方完成2
KEC平方完成3
KEC平方完成4

平方完成といえば,放物線を描くのによく使います。
放物線の豆知識といえば,パラボラアンテナ。
私が中学生の頃,塾で「放物線のことを英語で『パラボラ』って言うねん。パラボラアンテナのパラボラやで!」と先生が言っていたのがいまだに強く印象に残っています。
その時の感動(?)を塾生の皆さんにお伝えしようと毎年同じことを言っているのですが,なかなかウケません。
とりあえず,タイトルを英語にしてみました。

放物線の焦点

こんにちは。KECの塾・予備校部門,高槻本校の数学・理科担当の川渕です。
高槻本校では,6月6日(日),13日(日)の2週にわたり,能力診断テストを実施します。
先日,担当している高1の塾生から「能力診断テストに向けて,練習プリントが欲しい」のと申し出がありました。
そういう申し出は大歓迎しています。

高1の上のクラスでは,現在,2次関数を学習しています。
2次関数のグラフは放物線になりますが,放物線のことを英語で何というか,ご存じでしょうか。
 
 
答えは・・・
 
 
parabora[パラボラ]です。
この名前,聞いたことはないでしょうか。
衛星からの電波を受信するのにつかわれる,中華鍋のような形のアンテナを「パラボラアンテナ」といいますが,そのパラボラです。
中華鍋のような形は,放物線が軸で回転することでできています。
回転してきる面を放物面といいます。

放物面には,「中心軸に平行にやってきた電波が,放物面で反射すると一点(焦点)に集まる」という性質があります。
焦点といえば,先日,楕円の焦点をスクラッチでプログラミングして描きました。
今回は,スクラッチで電波が焦点に集まるようすを描いてみました。
あやしいUFO(?)が放物線を描いた後,黄色い電波がとんできます。


 
数IIIで2次曲線を習った人はご存じだと思いますが,放物線上の点は,準線までの距離と焦点までの距離が等しいです。
電波が直進して準線に達する時間と,放物面で反射して焦点に達する時間も等しくなります。
そのため,微弱な電波でも効率よく受信できます。

また,焦点から光を出すと,黄色い線を逆にたどって軸に平行な光がとんでいきます。
車のライトや懐中電灯は,放物面を利用して遠くまで照らせる光を出しているそうです。
身近なところで数学の原理がいろいろ使われているものですね。

そんな楽しい2次関数ですが,高1の場合,高校によってはそこまで学習が進んでいない場合があります。
そのため,高1の能力診断テストの範囲には含まれていません。
この機会に,学力を知りたい一般生の皆様は,安心して受験してください。
※能力診断テストは一般生の方の受験を大歓迎しています。

期末テストまで・・・

みなさん、こんにちは!

KEC近畿教育学院・予備校 石山本校の小原です。

 

石山本校のブログ【6月13日 能力診断テストのご案内】で、

大津市の中学校では、1学期中間テストが終わって返却が始まっているとお話しましたね。

私も生徒たちの成績に一喜一憂しております。

 

そして、ふとカレンダーを見ると、1学期期末テストまで3週間ほどしかないことに気づきました。

確かに少ししんどいかもしれません。ただ、これをプラスに考えることもできます。

中間テストに向けて頑張って勉強した人は、その熱意をまだ持続しているはずです。

このまま熱意を継続して期末テストまで、もういちど頑張りましょう。

 

もしも、中間テストの勉強をサボってしまった人。

石山本校の個別指導部門では下記のような定期テスト直前対策無料で行います。

 

 

たった3時間、されど3時間です。

ご自身が通われている学校のテスト範囲の演習プリントをどんどん解いていただきます。

各学校のテスト範囲のみを行いますので、無駄なくテスト勉強ができます。

また、答え合わせと解説は講師が行いますので、一方通行というわけではありません。

英語は得意だけど、数学が苦手という方であれば、数学だけで3時間も可能です。

 

詳細については、下記のお電話番号よりお問い合わせください!

 

KEC近畿教育学院・予備校

石山本校

TEL077-537-5861